5. MOMENTS

The general first-order moments ER, (0 < B < =), are now easily
obtained from the results of the preceeding Section. Since

()

fw](E)ELBdE, 0<B<o , (5.1)
0 ;

(B real and nonnegative), we may apply (4.2) for Class A interference, and
(4.5), with (4.3), (4.4), for Class B noise, respectively.

5.1 Existence and Direct Calculation (Approximate Forms):

For Class A interference we get directly

Ay . B2
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cf. (3.5). The sum in (5.2) is clearly finite, since by Stirling's
theorem (m! g_mme"m/ﬁ?ﬁj for sufficiently large m (>> AAPA) the summand
is dominated by Ag/mm+1"8. Accordingly, all (finite) moments* exist for
Class A interference, and are given by (5.2), approximately. [We recall
that we consider only the principal development of P]A’”]A’ cfi {3, 7);
(4.2) above.] Typical moments here are, from (5.2):

<£P>A =1 , as required;

* Of the envelope, and of the instantaneous amplitude [cf. Middleton, 1974,
Section 4.5], by the same argument.
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(5.3)

-A, © o m/AgtTE o\ AT
(6 2);\ e A ) (_T_‘,_%‘I_A‘_)"#' =1, (as required).
m=0 A :

For the Class B interference we have, from (4.3), (4.4) in (5.1):

e
B o
ek =/0' €%y (€)g_[dE + CBEBw](E)B_IIdS (5.4a)
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(5.4b)

[The iﬁtegration of the hypergeometric function directly from its series
form yields

£

k ~B+2k+2 L 2k+1
N, (B = (-1)RE 2 (14an/2) iy
L B b (14no/2;1;-B2)dE = § — "( I ) (5.5a)
ZGB'[O‘ G i k=0 (kt)2(8+2k—2)(263)2k 26y

which is probably the most direct and convenient form for numerical inte-

gration here.] In addition, the second integral in (5.4b) may be expressed
as an incomplete gamma function, I_, which is tabulated [K. Pearson, 1951],
e.g.

C

o 2,57
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3
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where IC is defined by

1 fx y=12-Y
IC(X,Y): F_(W 5 y e dy . (55C)

Again, direct integration of the integral itself in (5.5b) is probably the
most conveniént numerical procedure.] Clearly, by the same argument used
above for the Class A noise [cf. (5.2) et seq.], all (finite) moments exist

for Class B interference, as well. Some typical moments here are, from
(5.4):

<€°>B = 1, as required; (5.6a)

3
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- nso . o 0
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L B 7 (268)M 8 1-IC[€§/2U$B;2+5/2]} <o (5.6c)
4GB m=0 ’

[For numerical calculation we may also evaluate the integrals (left member
of (5.5b)) directly, replacing B by 8+1, B+2, respectively for the mean and
mean square, (5.6b), (5.6c).]

As required from physical considerations, e.g. finite energy in the
Class B (and A) interference; the second moment, in particular, is itself
finite. This is not the case if we use the approximate forms W](EJB—I’
or wi(E)B_I (=—dPi(B_I)/d€; cf. (3.21) et seq.), for all values of the
envelope. Then, we have, in effect

B 2r(1+a/2 R-a-1
{a} 5f0 gt (B)g_+ Smts AJ efTetigen; (5.7)
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this Tast term from (3.31). The second term of (5.7) is finite only if

0 < B8 <a (<2). Accordingly, no B8 moments exist for the Class (B-I)
distributions, unless 8 is less than the spatial density - propagation
parameter a. Thus, <€>>B > in contradiction to the physical situations
we are attempting to model. In some cases (e.g. atmospher1c noise)

Wg_1» PB I are quite satisfactory for even very large values of &, cf. Figs.
(3.3) II,7(3.4) II, but there is always some finite € beyond which a
suitable form of Wg_11> O PB 1 Must be used, in keep1ng with the bounded
nature of all the moments.

5.2 Class A and B Moments: Exact Forms (Even Moments Only):

As we have seen above in Sec. (5.1) all (first-order) Class A and B
moments of the envelope (and hence of the instantaneous amplitude) exist
and are given, an approximate form, by Eqs. (5.2), (5.4). These results
are approximate, albeit good ones.

However, an alternative development is possible, which can provide
us with exact expressions, for the even-order moments.* For this we use
(2.24b) and take its [(-1‘)k dk/drk] derivative at r=0, to get

[(1)k ok ﬁ 1r‘)] <E cos ¢>E,¢ <Ek><cos w) 250

(5.8)
this last, since N](E,¢J'= N](E)N](w), cf. (2.20); (2.21), @ result of
the narrow-band nature of the output from the (aperture x RF x IF) stages
of the receiver. Since N](w) is uniform in (0,2n), all k-odd moments of the
phase vanish, e.q. <coskw} =0; k =1,3,5,..., and only the k-even moments
remain. With the help of

(c0s? ), = 0 /2 = (2k)1/2%¢ (k12 (5.9)

[Middleton, 1960, Eq. (5.26)] we accordingly obtain from (5.8) the general
relation

*  No such results are available for the odd-order cases; one must use the
approximate forms (5.2), (5.4).
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2,2 2
(%) = ”T%FTT_ (} £ s o s F](1riJ : (5.10)
r=

for the even moments, when they exist (as they do here, but see the com-
ments below in Section 5.3). 1In normalized form [with the aid of (3.3)]
we can write (5.10) equivalently as

2.2k 2k
2k kl1)=2 k d i
<£ > = i—T%ETT—-[}-l) EZEE FI(1aAi]A=O : (5.10a)

Our general result (5.10), (5.10a) is equivalent to the procedures'used by
Furutsu and Ishida [1960, Section 6] and Giordano [1970, Appendix II, p. 175
et seq.], which is derived in our study by a different process.

A. Exact Class A Even Moments:

For Class A, even-order moments, including an independent gaussian
component, the exact form is now obtained by using (2.50) in (5.10) or
(5.10a), rather than from the approximate relations (2.77), (2.78).: The
simplest procedure here is to expand the c.f. ﬁ1(iaA)A as a power series
in 12, which is permitted, since the integral (in the exponent) is a
definite integral, continuous in A%. The functional form of ﬁ](iak)A
is seen to be precisely that of the c.f. F](ig)A=P+G derived in the
earlier study for the statistics of the instantaneous amplitudes (Class A
noise), [Middleton, 1974, Section 4]. Accordingly, we use that expansion
of FT to write at once here (exactly)

S 2232 aht (3 2
Fy(ian)y = 1= 351 ay, (1413)+ 37| 5 0404305, (141;)

6,6 _
ahr |5 45 3 .3 8.8
6! [2 “at 7 4A92A(1+Tﬁ3+15ﬂgg(‘+fg)_J*O(a r"),(5.11a)
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82,y (147) 160, (1+1,)7 1695, (141, )
, (5.11b)
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where we have
N k ' |
ypp = AA<B§§>/2 s (cf. {2.75d)) Tp E-GE/QZA s (Gl (Buld);

with

<2 z<fZ°()d> » ¢f. (2.64c), (2.65), (2.75d)
’0 [e=zo’A0’e07’£?RT] for <§§K .

Applying (5.17) to (5.10a) and observing that the expression in the square
brackets [ ] in (5.10a) ;s precisely the coefficient of (—1)k(ax)2k/(2k)!
in (5.11a) [or of (—T)kx k/(Zk)! in (5.11b)], we obtain

[<Ep>h = 1] (as expected) ; (5.12a)
(€2), = 222 i s _
y = 22 QZA(T+FA) = 1 (as expected) ; (5.12b)
' Q
€ = § %3 o232, (14120 - R 42 ; (5.12¢)
_ QZA(1+FA)

6
6y''_ 1625 (5 .45 3 .13
(€0 75 [7 %" 7 9gp0p0 (1414 )¥1505, (1473)°]

) 2 : 9
i 3 13
op (1414)

: 4A 5+ 6 etc. (5.12d)
2p(1417)

(This is given in unnormalized form, e.g. with £/a = E, by (5.12) on
replacing £ by E and deleting a therein.) These results (5.12) are to be
compared with the approximate (and sometimes exact) forms (5.3). For
example, observe that when FA’+ 0, =, <£?> =1, as required, cf. (5.12b),
with similar equivalences for (Eﬁ), etc., from (5.2) vis-a-vis (5.12c),
(5.12d), etc. For intermediate values of AA’ PA, we may expect modest
departures from the exact values above. Finally, using (5.11c) in (5.12)
we can write alternatively
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.<&O>A =1 (R

€0 = 2+ (B2 1umy)?
9Bt > (éﬁ >
6 oA
= 6+ ; etc.
<E’>‘q A<BZA>2(T+PA)2 AA A> (1+r )3 o
(5.13)

which shows how the (normalized moments behave as the Impulsive Index A
or as the independent gaussian component becomes dominant (! +w)

For the odd moments of £(or E) our procedure above, of course, is not
applicable, and we must go directly to the calculation on the pdf, wT(EJA,
cf. (5.1), (5.2), for k=1,3,5,... .

B. Exact Class B Even Moments:

The relations (5.10), (5.10a) apply here also, but the explicit
differentiation of F](iaA)B, based on (2.51) cannot make direct use of a
Power series expansion of the integrand in the exponential, because the
integral is now an improper integral (0,=) which is not uniformly conver-
gent (in 1) over the entire domain of integration [Courant, 1936,II Sec. 4,
Chapter 4, p. 307 et seq.], so that term-wise expansion (in 1) of the
integrand, as for Class A interference above, is not permitted. However,

let us temporarily consider the case where (Zo)max< » (e.g., output signals
of finite duration). Then, the term-wise expansion is permitted, as the
integral is now both proper and uniformly convergent; (in fact, the
resulting c.f. belongs formally to Class A). We proceed as in Class A
above and next apply T1m(z ) ax’™ to the c.f., e.g. FT 1al)B

};Z) ax—woF (1aA[(zo (m)“B"’ and hence to each term of (5 11),. {5.12),
etc., now spec1a11zed to the Class B parameters, AB’ FB’,BOB’ etc.

Thus, (5.11) applies again here, with T Ta*Tgs AA+AB, B on*Bope etc. We

obtain the analogue of (5.12), for example:
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<Ep>5 = 13 . N
as expected;

.Q£?>B'= 1,

(N

E)

where specifically,

Qo o = fgﬁéég; [g: : A 00 A By
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(5.14a)

cf. (2.87d) and B_p in (2.87c). Again, for the odd-moments (k=1,3,5,...)
we must use the approximate forms (5.4), (5.6), etc.

5.3 Remarks: _

For Class B (and . Class C) interference (0 < a < 2), when (2.89)
is used as an approximation for the c.f., it is clear that if we use (2.89)
in (5.10a), then GEZ> > O(Aa'2)1=0f »: the second moment does not exist.
Of course, this divergence is simply the consequence of the inadequate

approximation, a behaviour which is alleviated by the alternative approach
using the results of Section 4, Eqs. (4.3)-(4.5) in (5.1), cf. (5.4)-(5.6).

Of perhaps greater interest is to note that, in terms of our general
classification [Sec. (2.3) and Sec.(2.5-3)], Giordano and Haber [1970,1972],
~in effect, postulate a finite period of observation (0,T) for each member
of the ensemble, e.g. Eq. (2.36) above is in force. This is equivalent to
Class A operation, since itamounts to an abrupt truncation of the basic
signal waveform uo(z) as emitted from the ARI stages of the typical narrow-
band receiver, cf. Fig.(2.1)II. This, in turn, means that the receiver
bandwidth is large enough vis-a-vis that of the input to pass it with
negligible transients, a defining characteristic of Class A noise. Then
all moments exist [cf. Sec. (5.1)] and the proper approximation for the
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PD is (3.7b). This Class A, or truncated case, goes over into a Class B
model as the observation period (0,T) becomes large vis-a-vis receiver band-
width, e.g., as TafARI>>1. The type of approximate c.f. employed is then
that given by (2.89), or more suitably, (2.90), which includes an indepen-
dent gaussian component. These, as we have seen [cf. Sec. (3.2)] yield
satisfactory approximations for small and intermediate ranges of envelope
€, or thresholds > but fail at some point ("large" &, Eb) to give the
more rapid convergence needed to insure the physically required finite
moments of all (positive) orders, cf. Sec. (5.1). Thus, the results of
Giordano and Haber [1970,1972] (for suitably large TafARI), while prac-
tically useful as long as the statistics of very large values of the en-
velope are not demanded, are analytically incomplete as Class B models of
the full range of possible values of the random envelope £ and exceedance
probability P](E:> Eﬁ)B‘

On the other hand, the important analysis of Furutsu and Ishida [1960],
which represents a subclass of our Class B model in that a specific emit-

ted waveform [uo(z)Bjis chosen, i.e. an exponential n~e %

, and several,
particular spatial distributions of sources with a given propagation law
(51/k) are assumed, along with an exponential distribution of input signal
amplitudes, does yield analytic forms of the PD and pdf which permit the
existence of all orders of envelope moments, and which conform closely to
the statistics of the atmospheric data studied therein. The approach

of Furutsu and Ishida [1960] is similar to ours in that approximate c.f.'s
are obtained, suitable for the small and 1akge values of &£(and 50), while
the intermediate ranges (of £) are evaluated by numerical techniques.

The canonical methods of our approach, however, are not invoked. Of course,
neither Furutsu and Ishida, nor Giordano, and others, consider or distin-
quish Class A interference, which is a new category, as far as its
statistical-physical description is concerned, considered originally by the
author [Middleton, 1973, 1974].
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